超高効率ターボ冷凍機の開発

山	П	忠	司*	井	上	修	行*	佐	藤		忠*
金	子		淳**	本	\mathbb{H}	修-	一郎**	渡	邉	啓	悦**

Development of High-efficiency Centrifugal Refrigerating Machine

by Tadashi YAMAGUCHI, Naoyuki INOUE, Tadashi SATO, Atsushi KANEKO, Shuichiro HONDA, & Hiroyoshi WATANABE

A high-efficiency, centrifugal refrigerating machine has been developed and is expected to be released into the market within this year. This novel and unprecedented centrifugal refrigerating machine features a duplex refrigerant cycle for enabling a high COP of 7.0 (under a rated condition), a high-efficiency compressor driven by a gear-less, high-speed motor which is inverter controlled. Performance test results indicated favorable temperature, partial load, and control characteristics.

Keywords: Centrifugal refrigerating machine, Duplex cycle, Inverter, High speed motor, Air-conditioning system, Heat exchanger, Compressor without gear, COP, Impeller, Partial load

1. はじめに

近年,環境問題を契機に機器の省エネルギー化が加速 している。

大型ビル空調や工場空調などの大型設備に多く使用さ れているターボ冷凍機は省エネルギー化による環境負荷 低減やランニングコスト削減の効果が大きいため,メー カ各社は,高効率機を市場に出してきた。

この度当社はターボ冷凍機の更なる高効率化を目指 し、(独)新エネルギー・産業技術総合開発機構(NEDO) と超高効率ターボ冷凍機の共同開発研究を行った。これ は「エネルギー使用合理化技術戦略的開発/エネルギー 使用合理化技術実用化開発/ターボ冷凍機の高効率化技 術研究開発」としてCOP=7.0のターボ冷凍機の実現を めざしたもので、2006年度から着手し2009年度に製品 化できたのでここに概要を紹介する。

- * 荏原冷熱システム(株)
- * 風水力機械カンパニー 開発統括部 製品開発室 大型水力 機器グループ
- ** 風水力機械カンパニー 開発統括部 技術開発室 流体開発 グループ

2. 研究開発の背景と新技術

2-1 背景

地球温暖化防止に関する京都議定書の目標達成のた め、業務部門の熱利用機器(冷凍機など)の高効率化が 主要な課題として取り上げられている。この部門の大規 模店舗あるいはオフィスビル空調などでは、従来ガス吸 収冷温水機が主流となっていたが、ここ数年効率のより 良い電動冷凍機が主流となりつつある。大型冷凍機(吸 収冷凍機も含む)で多く使用されているターボ冷凍機に 対しても需要家から更なる省エネルギー化の要望は多い が、既に効率は従来の技術では限界に近く、飛躍的な高 効率化には新たな技術開発が必要になっている。そこで 二重冷凍サイクル・高効率圧縮機・高速モータといった 冷凍サイクル及びその要素部品の高効率化技術を確立 し、冷凍機としてまとめた超高効率ターボ冷凍機の開発 に着手し本年、完成をみた。

2-2 コア技術

本機は搬送動力低減のため冷水温度差を10 Kとした 定格条件(表1)においてCOP=7.0,更に使用時間の長 い部分負荷においても高い効率を維持するため,以下の 新技術を採用している。

(1) 二重冷凍サイクル

項目 Items	単位 Units	仕様 Specifications
冷凍能力	kW	1 758.1
Capacity	USRt	500
冷水入口温度 Chilled water inlet temp.	C	17.0
冷水出口温度 Chilled water outlet temp.	C	7.0
冷水流量 Chilled water flow rate	L/min	2 5 2 0
冷却水入口温度 Cooling water inlet temp.	C	32.0
冷却水出口温度 Cooling water outlet temp.	C	37.0
冷却水流量 Cooling water flow rate	L/min	5760
インバータ入力 Inverter input	kW	251.2
成績係数(COP) Coefficient of performance	_	7.00

	表1 超高効率ターボ冷凍機の目標仕様
Table 1	Specifications of developed refrigerating machi

(2) ギアレス高効率圧縮機

(3) インバータ駆動高速電動機

3. 二重冷凍サイクル

3-1 冷媒特性

ターボ冷凍機の冷媒として一般に用いられている R123, R134a,最近採用され始めたR245fa,更に,低 GWP-HFC冷媒として注目されるR152aなどを,冷媒候 補として比較検討した。それらの特性比較を**表2**に示す。

表2中,ODPはオゾン層破壊係数で,冷媒R11を基準 値1.0とし,GWPは地球温暖化係数(100年)で,CO₂ を基準値1.0としている。

冷凍サイクルを形成したときの特性としては, 基本サ

表2 冷媒特性比較 Table 2 Properties of refrigerants

冷 媒 Refrigerants	R123	R134a	R245fa	R152a
冷媒分類 Classification	HCFC	HFC	HFC	HFC
分子式 Molecular formula	CHCl ₂ CF ₃	CF ₃ CH ₂ F	CF ₃ CH ₂ CHF ₂	CHF ₂ CH ₃
オゾン層破壊係数(ODP) Ozone depletion potential	0.02	0	0	0
地球温暖化係数(GWP) Global warming potential	120	1 300	950	140
凝縮圧力 MPa (G)(at 38℃) Condensing pressure	0.0432 低圧冷媒	0.862 高圧冷媒	0.1344 低圧冷媒	0.760 高圧冷媒
可燃性 Flammability	無	無	無	有 (防爆モータ)
基本サイクルの理論成績係数 Basic cycle COPth	7.79	7.34	7.60	7.56

イクルについての理論値COPthを示す。理論値は圧縮機, モータなどの機器の効率を100%とし,蒸発温度6℃,凝 縮温度38℃として求めたCOPである。R123のCOPが 最も良く,次いでR245fa, R152a, R134aの順である。

冷媒 R123は、候補冷媒の中でサイクル効率が優れ、 GWPも小さく、低圧冷媒であることから外部への冷媒 漏洩も少なく、優れた冷媒といえる。しかし、HCFC冷 媒であるため、モントリオール議定書により2020年か ら新規冷凍機への採用が規制されることになっている。 また高効率機に対する政府補助金制度は、ODP=0が条 件であって、HCFC冷媒は除外されている。

冷媒 R152aは、ODP=0のHFC冷媒の中ではGWPが 小さく、この点で優れた冷媒といえる。しかし、可燃性 があることから、防爆対応モータにする必要があり密閉 化に際して厳しい制約が生じ、また冷凍機の据付環境に 対する規制が課せられる。

以上から、冷媒はR134aとR245faが候補として残る。 R245faは、COPth及びGWPの点で優れ、また低圧冷媒 であることから現地組立が可能で、また冷凍機が同一気 密度であれば冷媒漏れ量を少なくできるなどの利点があ る。一方、R134aは、高圧冷媒であり、蒸気の比容積が 小さいことから、圧縮機の小型化が可能でコストメリッ トが望める。本機は、環境及び省エネルギーを重視し、 また従来機の更新対応なども考慮して、R245faを採用 することにした。

3-2 二重冷凍サイクルの効果

1台の冷凍機内に2系統の冷凍サイクルを構成して高 効率化を図る二重冷凍サイクルの基本形を図1に示す。

基本サイクルにて,従来の単一サイクルと二重冷凍サ イクルのP-h線図(圧力-比エンタルピー線図)上での 比較,並びに,冷水/冷却水温度-冷媒温度線図上での 比較を図2に示す。破線が単一サイクルであり,実線が

Fig. 1 Duplex refrigerant cycle (Basic)

低圧側と高圧側の2系統サイクルである。圧縮機で蒸発 温度から凝縮温度までの温度ヘッドを上昇させるが、二 重冷凍サイクルでは冷凍機内に2系統のサイクルをもた せることで、平均の温度ヘッドを低下させて、効率を改 善することができる。T-s線図上で仕事量をイメージ的

図4 概略フローシート Fig. 4 General flow sheet

に示すと図3のようになり、二重冷凍サイクルで仕事量 (青色部面積)が減少することが分かる。

本機の概要フローを図4に、構成図を図5に示す。

図4のように蒸発器,凝縮器,圧縮機は高圧サイクル 側と低圧サイクル側に分かれている。モータは共通で, あたかも2台の冷凍機をシリーズ接続しているように見 えるが,図5のように外観上は1躯体で内部分割されて いる。蒸発器は左右,凝縮器は上下配置で極力コンパク トにしている。冷水は高圧側蒸発器から低圧側蒸発器に 通水され,冷却水は逆に低圧凝縮器から高圧凝縮器に通 水されている。それぞれのサイクルは2段圧縮単段エコ ノマイザサイクルを採用し高性能伝熱管を使用した熱交 換器と高性能圧縮機の組合せで高効率化を図っている。

4. ギアレス高効率圧縮機

4-1 圧縮機のエアロ検討/設計

4-1-1 圧縮機仕様

羽根車の効率を確保するため、出口周速マッハ数を

図5 構成図 Fig.5 Schematic diagram

1.0程度とした。圧縮機の性能は流量係数に依存してい るので、2段圧縮機の性能を好適にするためには各段の 流量係数を適切に選定する必要がある。圧縮機の効率が 最大となる各係数を**表3**に示す。

4-1-2 羽根車のエアロ検討

1段目並びに2段目圧縮機羽根車,1段目戻流路案内羽 根形状の設計には最新の設計技術である3次元逆解法設 計技術を採用した。3次元逆解法は設定した羽根の負荷 分布に基づいて羽根の形状を計算するもので,羽根角度 分布を定義する従来の設計手法とは異なり羽根の負荷分 布を自在に制御することができる。

3次元逆解法の応用研究によって,羽根車シュラウド (例(外側ケーシング側)で羽根車入口側の負荷を大きく し,一方ハブ側では入口から出口まで一様かあるいは羽 根車出口側の負荷を大きくする設計が好ましく,更には 羽根車出口端(後縁端)形状を,ハブ側をシュラウド側 に対して羽根車回転方向に先行するように傾けた形状に するとよいことが分かっているので,本開発においては 羽根車の負荷分布を前記のような設計とした。

リターンベーンの設計はディフューザ入口部に羽根車 と羽根なしディフューザを組み合わせた流れ解析結果か ら求めた速度分布をUターン部入口(ディフューザ出口) 条件とし、3次元逆解法によって設計した。設計したリ ターンベーン形状は、Uターン部があるためにやや3次元 形状になるが、逆解法計算後ハブ側のベーン形状もシュ ラウド側と同一にすることにより2次元形状とした。

2段目ボリュート形状はディフューザ出口とボリュー トスロート部の間の角運動量保存と質量の保存を満たす ようにスクロール面積を決定することで求めた。

設計した羽根車は,流れ解析手法によって,内部流れ

項目 Items	単位 Units	1段目 1st stage	2段目 2nd stage
入口圧力 Inlet press.	kPa	75.09	138.15
入口温度 Inlet temp.	K	280.9	297.0
出口圧力 Outlet press.	kPa	138.15	241.75
压力比 Pressure ratio	-	1.84	1.75
回転速度 Rotational speed	min ⁻¹	8 300	8 300
流量係数 Flow coefficient	_	0.107	0.067

表3 圧縮機仕様 Table 3 Specifications of compressor

並びに圧縮機圧力比,性能を確認した。更には1段目圧 縮機に関しては羽根車,羽根なしディフューザ並びに戻 り流路案内羽根を組み合わせた圧縮機段落としての流れ 解析を行い,戻り流路が好適にマッチングしていること, 設計要項運転状態において好適な流れ状態であることを 確認した。2段目圧縮機に関しては羽根車下流部には羽 根なしディフューザを介してボリュートケーシング(渦 巻室)を設置しているが,羽根車からボリュートケーシン グを含めた流れ解析を行い圧縮機の圧力比,効率を確認 した。

4-2 圧縮機構造の検討/設計

4-2-1 圧縮機仕様

エアロの検討/設計から導かれる圧縮機の設計仕様は

・2系統の圧縮機部分を有すること

・モータ出力:295 kW

・回 転 速 度:8300 min⁻¹

・設計軸受寿命:10年以上

とした。

4-2-2 圧縮機構造の検討

従来からのインレットベーン制御だけでは,部分負荷 時の効率が低下する。また,部分負荷時の冷却水温度低下 の有効利用,更に中間時期の低温冷却水の有効利用を考 えると,羽根車の回転速度制御が有効である。回転速度 制御はインバータによる方式が容易で安価である。イン バータによる回転速度制御で冷却水温度低下時のヘッ ド,流量を調整し,それで調整しきれない低負荷時の制 御用として,1段目の吸込部にインレットベーンを設け ることにする。

エアロの検討から,羽根車回転速度は,8300 min⁻¹と なり,商用周波数による誘導モータの場合には,従来機 と同様に増速機が必要になる。しかし,前述のように羽 根車回転速度制御にインバータを採用するので,増速機 を用いることなしに,インバータによる高周波数で高速 誘導モータを駆動し,羽根車はこの高速モータに直結す ることにした。高速誘導モータの採用による増速ギアの 削減は,その分の機械損失低減による効率の向上と,増 速ギアに必要な潤滑油補器の削減につながる。

圧縮機は、二重サイクルに低コストで対応するため、 1台のモータで駆動することとし、中央部に1台の高速 誘導モータを配置し、軸の両側に対向する形で2段の羽 根車を直結する構造とする。これにより2系統の冷凍サ イクルを形成することができる。また、羽根車の対向化 は軸方向の圧力バランスが取れ、スラスト荷重を大幅に 低減できるため、軸受負荷も大幅に低減できる。

図6 圧縮機構造図 Fig.6 Compressor geometry

軸受はスラスト荷重を負荷する固定側と反対側である 自由側の2組を使用している。

圧縮機の1段目と2段目の間にはサイクル効率を向上 させるエコノマイザからの戻り流路を設けている。

圧縮機の構造図を図6に示す。

4-2-3 圧縮機軸受

本圧縮機は高速回転するための耐高速性と,軸の危険 速度を低下させないために高い剛性を有するジェット潤 滑のアンギュラ玉軸受で基本定格寿命(L10)が80000 h 以上のものを使用した。

4-2-4 圧縮機主軸

高速回転する主軸の設計は危険速度を考慮して行った。羽根車の流れを阻害しない範囲で極力大径化することにより,一次危険速度が13000 min⁻¹と定格回転速度に対し約57%の余裕がある設計にすることができた。

5. 高速モータの開発

本開発のコンセプトの一つであるギアレスによる圧縮 機とモータの直結・高速回転は,ターボ冷凍機の高効率 化のため導入したものであり,インバータの採用と合わ せて,次のような特長をもつ。

(1) 高速運転が可能:従来の機械的な増速方式に比べ, 構造が簡単で保守が容易である。

(2) 速度制御が容易:広範囲に効率よく無段階の可変 運転ができる。

(3) モータ始動電流が小さい:従来の始動電流が定格の5~6倍に対し, 1.5倍程度である。

5-1 高速モータの概要検討と仕様

高速モータの設計が,通常のモータと異なるのは,電

磁気的な設計のほかに、高速回転による遠心応力に対す る材料強度の問題を考慮した設計が要求される。

更にターボ冷凍機圧縮機用として,冷却構造が重要と なる。液相冷媒による回転体冷却は,回転体表面で発生 する流体かくはん損失の増加をもたらすので,最適な冷 媒流量と回転体の小形化の検討が必要である。その反面, 小形寸法化は電磁気的損失の増大があるので,それらの 兼ね合いも要求される。

また、インバータでの高速モータ運転を考慮すると、 インバータ電力素子のスイッチングに伴うサージ電圧が 発生するため、低圧モータであっても1000V以上の耐 電圧で設計した。

冷凍機全体性能と圧縮機諸源を考慮して、高速モータの仕様を「400 V, 295 kW at 8300 min⁻¹」とした。

5-2 モータの特性

JEC規格に従い性能評価を行った結果,定格点におけるモータ効率は,約94%となった。

評価試験において,定格負荷出力で最も高温となるス テータコイルエンド部において65~68℃であり,冷却 機能が十分あることを確認した。

6. インバータの検討

高速回転誘導モータ(2極, 8300 min⁻¹, 400 V, 295 kW)用の汎用インバータについて,各種運転パラメー タの設定を変えながら,モータを駆動した結果,正常な 運転ができる最良なパラメータの設定点を見出すことが できた。

試験結果を図7に示す。冷凍機の定格付近のインバー タ効率はおおむね98%である。

Fig. 7 Inverter efficiency

09-76 01/224

写真 ターボ冷凍機 RTVF050 Photo Centrifugal refrigerating machine RTVF050

7 冷凍機外観

図8 部分負荷特性(冷水出口温度7℃) Fig. 8 Partical load performance (Chilled water outlet temp. 7℃)

以上の検討結果をもとに組み立てた冷凍機の外観を**写** 真に示す。

8. 冷凍機の評価試験

8-1 定格点における性能

二重冷凍サイクルを構成した実機にて、冷凍機としてのCOP評価試験を実施し、目標値のCOP=7.0を達成することができた。

8-2 部分負荷特性試験

中間期における冷凍負荷60%,冷却水入口温度16℃では,COP=15.4と定格値の2倍,冬期における冷凍負荷40%,冷却水入口温度12℃ではCOP=22になることを確認した。

中間期は冷却水温度の低下に伴って、必要な温度ヘッ ドが低下し、圧縮機の必要回転速度が低下する。部分負 荷に対しては、圧縮機風量を減らす必要がある。回転速 度により風量も変化するが、温度ヘッドできまる最低の 回転速度よりも低下すると、圧縮機出入口の圧力比が維 持できず、サージングが発生する。図8に、回転速度制 御を行っている概略領域を一点鎖線で示した。

サージングによる回転速度の制限で,回転速度変化で 風量を減らせない領域に対しては,入口ガイドベーンで, 吸込み冷媒蒸気の羽根車への入口角度を変え,吸込み風 量を変えている。回転速度制御領域外は,冷却水温度に 対する最低回転速度にして,ガイドベーン制御を加えて いる。

8-3 冷凍機構成機器の評価

8-3-1 二重冷凍サイクル及び伝熱機器

二重サイクルの構成機器の中で、モータは唯一両サイ

クルに共用しており、モータと両サイクルの圧縮機はラ ビリンスシールを通して主軸で連結している。ラビリン スシールのすき間からの冷媒蒸気の計算による移動量 が、サイクル間のアンバランス発生状況と合致した。冷 媒のサイクル間の偏りを修正するため、蒸発器の冷媒量 を冷媒液面で検出し、サイクル間の冷媒量調整する制御 を加え、長期連続運転に問題のないことを確認した。

蒸発器及び凝縮器の性能を,冷凍負荷に対するUA値 [kW/K] として図9に示す。U [kW/(m²K)] は熱通過 率,A [m²] は伝熱面積である。二重冷凍サイクルを構 成しているので,蒸発器,凝縮器に,それぞれ高圧サイ クル(H側)と低圧サイクル(L側)とがある。

凝縮器に関しては,高圧側,低圧側でほぼ同様の伝熱

図9 蒸発器・凝縮器の伝熱特性 Fig.9 Heat transfer property (Evaporator & condenser)

表4 標準仕様表 Table 4 Standard specifications

項目 Item		単位 Unit	仕様 Specifications								
型式 Model		-	RTVF040 RTVF050								
冷水出口温度 Chilled water outlet.temp.		C	7	5	7	5	7	5	7	5	
冷凍容量 Capacity		kW {USRt}	1 407 {400}	1 336 {380}	1 407 {400}	1 336 380	1 758 {500}	1 670 475	1 758 {500}	1 670 475	
容量制御範囲(JIS基準) Control area		%	20~100								
	入出口温度 Inlet & outlet temp.	C	$17 \rightarrow 7$	$15 \rightarrow 5$	$12 \rightarrow 7$	$10 \rightarrow 5$	$17 \rightarrow 7$	$15 \rightarrow 5$	$12 \rightarrow 7$	$10 \rightarrow 5$	
tter	流量 Flow rate	L/min	2015	1915	4 0 3 0	3 830	2 5 2 0	2 3 9 5	5040	4790	
冷水 lled w:	パス Pass	_	4 2		4		2				
Chi	水頭損失 Press loss	kPa	66	60	36	32	68	61	37	33	
	汚れ係数 Fouling factor	m ² K/W	0.000086								
	入出口温度 Inlet & outlet temp.	C	32 → 37								
ter	流量 Flow rate	L/min	4 650	4 460	4 690	4 5 20	5 800	5 560	5 850	5 630	
令却水 ing wa	パス Pass	-					2				
Cool	水頭損失 Press loss	kPa	59	54	59	55	58	53	59	55	
	汚れ係数 Fouling factor	m²K/W	0.000086								
	定格出力 Output power	kW	195	200	210	215	235	245	255	265	
動機 tor	所要推定入力 Input power	kW	207	212	223	230	252	259	271	281	
主電) Moi	電圧×周波数 Voltage×current	$V\times \mathrm{Hz}$	400/440 × 50/60				× 50/60				
	始動方式 Start type	-	インバータ始動 Inverter								
使用冷媒 Refrigerant		-	HFC-245fa								
概略運転質量 Total mass		t	15.5 16.4								

特性になっている。また、小容量になるにつれ、凝縮伝 熱が良くなって、UA 値も大きくなる傾向が見られる。

蒸発器では、小容量で冷水と冷媒の温度差が小さくな ると、沸騰によるかくはん効果が低下し冷媒側伝熱が悪 化し、UA値が低下してくる傾向がでている。

8-3-2 ギアレス高効率圧縮機

ポリトロープ効率は、定格点で目標の約83%を達成 した。

定格運転時の騒音値は最高で84 dB(A)で,振動変 位(両振幅)は4 µm以下となった。

騒音,振動とも当社の製品基準をクリアした。

9. 仕 様

このシリーズは、長年培ってきた技術をベースに、最

新のノウハウを付加して完成した超高効率ターボ冷凍機 である。その仕様を**表4**に示す。

10. おわりに

世界的な地球温暖化防止のための機械を望む傾向がよ り強くなる今,当社は冷凍機分野で更なる高効率化,期間 COPの向上をめざし,CO₂削減に貢献していく所存である。

最後に,この開発に当たり絶大なるご指導・ご協力を 頂いた新エネルギー・産業技術総合開発機構の関係各位 にこの場を借りて厚く御礼申し上げる。

参考資料

建築設備と配管工事,2009年2月号,第47巻第3号,「HFC245fa超 高速ターボ冷凍機」,増本,山口.