大気圧ターボ分子ポンプの開発

川 崎 裕 之* 小神野 宏 明**

Development of Atmospheric Pressure Type Turbomolecular Pump

by Hiroyuki KAWASAKI, & Hiroaki OGAMINO

A novel atmospheric pressure type turbomolecular pump has been developed for the microchip/IC manufacturing industry, as well as for SEM applications. This pump makes it unnecessary to use backup by auxiliary pumps, needed for creating an ultra-high vacuum environment by conventional turbomolecular pump operation. This new pump is fully oil-free, compact and featuring exceptionally high compression performance. Development was centered on the minimization of vane clearance by introducing thin ceramic multi-stage centrifugal vanes, as well as optimal dynamic and sensor-less magnetic bearings.

Keywords: Atmospheric pressure type TMP, Ceramics centrifugal vane, Dynamic bearing, Backup pump, Sensor less magnetic bearing, Thrust force, Ultra high vacuum, Destructive torque

1. はじめに

ターボ分子ポンプ(以下 TMP)は,安定的に超高真 空が得られる高速・小型の機械式真空ポンプであり,半 導体・液晶製造装置や表面検査装置などの様々な真空排 気系を構成する超高真空ポンプとして使用されている。

しかしながら現状のTMPは、クライオポンプやゲッ ターポンプなど、他の超高真空ポンプと同様に、単独で 大気圧まで圧縮はできない(大気圧から真空引きできな い)。すなわち、TMPを用いた真空排気系には、TMP が作動可能となる真空領域まで圧力を下げる補助ポンプ が必要である。また、TMPとこれら補助ポンプを接続 する真空配管やバルブ、あるいは大気引きのためのバイ パス配管なども必要となる。

TMPが半導体製造用として本格的に使用され始めた のは1990年代初頭からである。この頃から,TMPには 所定流量のガスを排気しつつ真空容器内を低圧(必要真 空度)に保つ能力が求められた。そのため,従来の分子 流領域で効率的な排気作用を有するタービン翼に加え, 中間流領域で効率的な排気作用を有する円筒ねじ溝を加 えた広域型TMPが開発され,広く使われるようになった。

*	精密・電子事業カンパニー	技術統括部	機器技術開発室
	開発グループ		
* *	同	同	

その後は、円筒ねじ溝に代わる高圧縮翼が検討され、 より作動圧力領域の広い(許容排気口圧力の高い) TMP

の開発が行われてきた。許容排気口圧力が向上すれば、 補助ポンプの小型化や真空配管系の小径化が可能とな る。このTMPは、排気口圧力(背圧)を広域型の数倍 まで高圧化しても排気性能を維持することができること から、高背圧型TMPと呼ばれている。

このように,TMPは半導体・液晶製造プロセスに使 用されてきたが,排気できるガス量が少ないために,用 途も限定されている現状にある。

一方,検査装置用などガスを流さず,小容量容器を真 空にするためだけの用途においても,補助ポンプが必要 な状況は変わっていない。

したがって、次世代TMPとしては、次の二つの方向 性が考えられる。

(1) ハイスループット型 (大流量化)

従来のTMPに対し、より多くのガスを連続排気でき、 かつ低圧化できるTMPを、ハイスループット型TMPと 称する。このポンプにより、LP_CVDなどの大流量ガ スを流すプロセス低圧化(プロセスウインドウの拡張) が図れ、また、新たな市場を作り出すことも可能となる。

この開発については別途報告することとする。

(2) 大気圧ターボ型 (大気背圧化)

高背圧化を飛躍的に高め、単独で大気圧まで排気でき

るようにする。それにより非常にシンプルな真空排気系 を提供することが可能となる。

今回,当社で開発したターボ分子ポンプは,従来, 最も広く使用されている広域型 TMPの圧縮性能を約 300 倍向上させた新製品であり,補助ポンプがなくても 超高真空から大気圧まで圧縮できる小型で,しかも完全 オイルフリーの超高真空ポンプである。

2. 現状TMP

2-1 広域型TMP

図1に5軸制御型磁気軸受TMPの構造図を示す。ロー タは、5軸制御型磁気軸受で非接触支持した回転軸に釣 鐘状羽根車を締結し構成されている。羽根車の排気翼構 成は、吸気口側(分子流領域)にタービン翼、排気口側 (中間流領域)に円筒ねじ溝を使用している。これらの 翼要素を組み合わせたTMPを一般的に複合型TMPも しくは広域型TMPと呼ぶ。吸気口側に配置されたター ビン翼は、翼先端での周速度が300~400 m/sで回転し、 吸気口圧力が約10⁻² Pa以下で最大の排気速度性能を示 す。タービン翼の下流側には、気体の粘性作用によって 気体を排気する円筒ねじ溝が配置されている。従来の TMPが大気圧まで圧縮できない理由は、ポンプ排気口 側に配置された円筒ねじ溝圧縮性能の限界による。この 円筒ねじ溝の許容排気口圧力は、300~400 Pa(大気圧 の1/333~1/250)程度であり、大気圧には程遠い。

2-2 高背圧型TMP

従来の広域型に対し、円筒ねじ溝部の圧縮性能向上が 図られたのが高背圧型TMPである。圧縮性能向上の手

図1 従来の広域型TMP構造図 Fig.1 Structure of conventional wide range type TMP

図2 遠心翼の構造 Fig. 2 Structure of centrifugal vane

法として円筒ねじ溝の代りに多段遠心翼を採用した。遠 心翼は図2に示すように回転円板とその上の渦巻状翼か らなる。この遠心翼を数段配備することにより,広域型 円筒ねじ溝に比べ高い圧力までガスを圧縮排気すること が可能となった。

この遠心翼部の許容排気口圧力は1000~2000 Pa (大 気圧の1/100~1/50) 程度である。

3. 大気圧ターボ分子ポンプの開発

3-1 開発コンセプト

超高真空から大気圧まで単独で圧縮可能な真空ポンプ を「大気圧ターボ分子ポンプ」と称することとする。大 気圧縮を可能にするためには,高背圧型TMPの50~ 100倍の許容背圧が必要であり従来技術の延長線上では 到底達成不可能である。

我々が着目したのは,動圧軸受技術である。動圧軸受 はより高速回転で,かつ回転側と固定側のクリアランス が微小となるほど反発力(保持能力)が上がる軸受であ る。これは軸受内側(高圧側)と外側(低圧側)との間 の境界層によるシール性の向上を意味するもので,翼に とっての圧縮性の向上を示唆している。

したがって,高背圧型TMPの大気側に回転翼と固定 翼を数段配置し,そのクリアランスを極小に維持したま ま高速回転させることを基本コンセプトに置き,かつ小 型化及び完全オイルフリーとした。しかも,大気圧縮に 伴う軸方向荷重の増大及び発熱対策が必要となるので, 具体的な開発コンセプトを以下とした。

(1) 翼クリアランスの極小化

大気側回転翼/固定翼に低熱膨張材を用い, 翼部品を 高い加工精度で成形し, かつ, 高い精度で組み立てるこ とで、翼クリアランスの極小化を図る。

(2) ロータの高速回転化,小型化

翼の圧縮性能向上による翼段数削減と, ラジアル磁気 軸受へのセンサレス磁気軸受の適用によって短軸化す る。それらによって, ロータ固有値を向上させ, 高速回 転化, 小型化を図る。

(3) 軸方向荷重対策:極小翼クリアランスの維持

軸方向制御に,磁気軸受に加え動圧軸受を配備し,極 小翼クリアランスの維持を図る。

(4) 発熱低減及び高熱伝導部材による放熱構造

3-2 基本構造

図3に大気圧TMPの構造図を示す。上段側に翼排気 部を,下段側に軸受部,モータ部を有するアクチュエータ 部を直列配置した。翼排気部は,吸気口側(分子流領域) にタービン翼,中間段(中間流領域)にアルミニウム合 金製遠心翼,排気口側(粘性流領域)にセラミックス製 遠心翼を配置した。これらの翼要素を軸方向多段に積み 上げて回転軸に締結し,ロータを形成している。ロータ を回転支持する軸受には,ラジアル方向に磁気軸受,ア キシャル方向に磁気軸受と動圧軸受の複合型軸受を採用 し,完全オイルフリーとした。また,翼排気部とモータ 部での大気圧縮による発熱を,冷却水で放熱している。 翼排気部とアクチュエータ部が軸方向に直列配置されて いるため,これらの部位の冷却は,磁気軸受,モータが

図4 セラミックス製遠心翼軸方向クリアランスと圧縮性能の関係 Fig. 4 Effect of axial clearance on compression performance

設置されたステータハウジング, 翼排気部をその内部に 包囲締結するケーシングの外周部に冷却部位を一体形成 することによって, 比較的容易に行うことができる。

以下に大気圧TMPの技術開発要素について詳説する。

3-3 セラミックス製遠心翼

従来の高背圧型TMPはタービン翼と遠心翼の多段配 置によって、超高真空から約1000~2000 Paまでの圧 縮が可能である。この圧力から大気圧 ≒ (1.013 × 10⁵ Pa) までの圧縮を行う翼要素に、セラミックス製遠心翼を採 用した。排気原理は従来の高背圧型TMPで用いられて いるアルミニウム製遠心翼と同じであるが、翼の形状 (翼本数, 翼高さ, 翼角度), 及び回転翼と固定翼の軸方 向クリアランスが異なる。特に圧力領域が大気圧領域に 近づくにつれ、クリアランスからの逆流量が増大するた め、クリアランスを極めて狭くしないと、実用的な1段 当りの圧縮性能を得ることができない。図4に、軸方向 クリアランスと1段当りの圧縮性能(差圧量)の関係を 示す。軸方向クリアランスをある値より狭くした領域か ら, 圧縮性能の急激な上昇が見られた。そして翼本数, 翼高さ, 翼角度を最適化したセラミックス製遠心翼を数 段配置することによって、約1000 Paから大気圧までの 圧縮を行うことが可能となった。

3-4 動圧軸受

セラミックス製遠心翼の軸方向クリアランスを極小化 し高速回転させることによって、大幅な圧縮性能向上が 得られることが分かったものの、この極小クリアランス の遠心翼を多段に組み上げ、かつ安定に高速回転させる ことが実用上の課題である。これを解決するために、軸 方向軸受に、磁気軸受と動圧軸受の複合型軸受を採用し た。図5に動圧軸受の構造図を示す。また、図6に動圧

図5 動圧軸受部の構造 Fig.5 Structure of dynamic bearing section

図6 クリアランスと反発力の関係 Fig. 6 Relationship between clearance and repulsion force

軸受のクリアランスと反発力の関係を示す。動圧軸受の 反発力F (N) と、軸方向クリアランス δ (m)、対向面 積S (m²)、回転周波数 ω (rad/s)、気体の粘性係数 μ (Pa·s) には以下の関係がある。

$$F \propto \frac{S^2 \cdot \mu \cdot \omega}{\delta^2}$$

対向面積*S*,回転周波数ω,気体の粘性係数μが一定 とすると,反発力Fは軸方向クリアランスδの2乗に反 比例する。例えば,ロータが動圧軸受の一方の面に接近 すると反発力が増しロータを押し戻す。そしてもう一方 の面に接近すると,こちらの面の反発力が増しロータを 押し戻すのである。この両面の反発作用により,ロータ は上下のクリアランス内に保持されながら回転すること ができる。この上下のクリアランスを,セラミックス製 遠心翼のクリアランスよりも小さく設定すれば,多段化 されたセラミックス製遠心翼の極小クリアランス部での 接触を発生させることなく,高速回転を実現することが できる。

3-5 ロータダイナミクス設計

大気圧 TMP は排気部と磁気軸受,モータを直列に配 置した構造であるため,極端なオーバーハングロータと なっている。このロータを磁気軸受及び動圧軸受による 支持で安定して高速回転させるには,ロータの3次危険 速度を高周波数化する必要がある。そこで,設計に際し ては次の2点に留意した。

なお,磁気軸受を用いたロータの場合,一般に1次及 び2次の危険速度は磁気軸受によって減衰が与えられ, 安定して運転・通過できる。

(1) 排気部(オーバーハング部)の短軸化

中間流及び粘性流領域への遠心翼採用は,排気効率向 上の観点だけでなく,排気部を短軸化する上でも有利な 構造である。遠心翼は流路が径方向に形成されるため, 流路長さを損なうことなく軸方向長さを短くできる。

(2) センサレス磁気軸受の採用

従来TMPに用いられているラジアル磁気軸受は, ラ ジアル変位センサとラジアル電磁石を軸方向に並べて配 置する構造であった。大気圧TMPでは, ラジアル電磁石 に変位センサの機能を併せもたせたラジアルセンサレス 磁気軸受を採用した。これによって, ラジアル変位セン サの厚さ分だけのロータ軸長を短くでき, 危険速度の高 周波数化を図ることができた。

4. 排気性能

表1に今回開発した大気圧 TMP の仕様を示す。また, 大気圧 TMP の性能測定結果の一例として,窒素ガスに 対する排気速度カーブを図7に示す。なお,図7中には従 来 TMP でほぼ同一口径となる当社 60 L/s 広域型 TMP を比較対象として示した。従来 TMP の排気速度取得時

表1 仕様 Table 1 Specifications

最大排気速度 N ₂ Maximum pumping speed	60 L/s
到達圧力 Ultimated pressure	1×10^{-5} Pa
定格回転速度 Rated revolution	80 000 min ^{- 1}
軸受方式 Bearing system	ラジアル方向:磁気軸受 Radial : Magnetic bearing アキシャル方向:磁気軸受+動圧軸受 Axial : Magnetic bearing + dynamic bearing
冷却方式 Cooling system	水冷 Water cooling
ポンプ寸法 Pump size	ϕ 102 \times 290 mm
ポンプ質量 Pump weight	11 kg

図7 排気速度カーブ Fig. 7 Pumping speed curve

の補助ポンプは1000 L/minのルーツ型ドライ真空ポン プである。大気圧 TMPは,従来 TMPと補助ポンプで 構成された排気系に対して,ほぼ同等の排気速度性能が 得られた。

5. 安全性について

従来 TMP の翼は,一体構造で製作されており,万一 ロータが破壊した場合は,その翼のもつ回転エネルギー がすべて開放され,破壊トルクとしてポンプを固定して いる部位に伝達される。しかし大気圧 TMPのロータは タービン翼,遠心翼の多段構造(分割構造)となってお り,分割された各回転翼要素が瞬間的に同時に破壊する

	表2 ロータ破壊時の発生トルクの比較
Table 2	Comparison in generated torque at rotor destruction

	大気圧ターボ分子ポンプ Atmospheric pressure type turbomolecular pump	従来 TMP Conventional TMP
回転速度 Revolution	80 000 min ⁻¹	72000 min ⁻¹
発生トルク Generated torque	130 N·m	658 N·m

ことはまず有り得ない。そのため、大気圧 TMPは従来 のTMPに比べ、ロータ破壊時に発生する破壊トルクを 大幅に低減でき、計算では、従来 TMPに比べ、約1/5 程度にすることが可能である。表2に大気圧 TMPと従 来 TMPで、最大排気速度がほぼ同一の当社60 L/s広域 形 TMPの破壊トルク計算値の比較を示す。

6. おわりに

新型真空ポンプとして,以下の特長を有するターボ分 子ポンプを開発した。

(1) 単独で超高真空から大気圧までの圧縮が可能である。

(2) 排気速度性能が,従来TMPと補助ポンプを組み 合わせた排気系と同等である。

(3) 完全オイルフリーである。

今後は,これらの利点が生かせる用途での実用試験を 重ね,製品化を図る予定である。