〔論文〕

無加温条件下における生活排水のUASB処理

米 山		豊*	岡	田		滋**	松	本	直	秀**
五十嵐	理	子**	中	村	明	博**				

Up-flow Anaerobic Sludge Blanket (UASB) Treatment of Municipal Wastewater under an Unheated Condition

by Yutaka YONEYAMA, Shigemi OKADA, Naohide MATSUMOTO, Ayako IGARASHI, & Akihiro NAKAMURA

In order to establish the feasibility of methane fermentation for treating low organic concentration wastewater, a pilot-scale UASB reactor was operated under an unheated condition over 631 days by seeding mesophilic sewage digested sludge and by feeding with a municipal wastewater. The pilot-scale UASB reactor had a treatment capacity of 50 m³/d, an effective capacity of 20.2 m³ and a net depth of 5 m. The result obtained from a continuous experiment indicated a stable treatment, i.e., between 397-631 days after the start-up. The mean values obtained during this time indicated a biogas generation of 2.4 m³/d, methane gas composition of 70.5%, COD_{cr} removal of 63.8% at water temperature of 23.8 °C, COD_{cr} volumetric load of 0.99 kg-COD_{cr}/ (m³·d), and COD_{cr} sludge load of 0.12 kg-COD_{cr}/(kg-MLVSS·d).

Keywords: UASB, Unheated condition, Municipal wastewater, Sewage, HRT (Hydraulic Retention Time), COD_c (Chemical Oxygen Demand), Methane, Biogas production rate, Granule

1. はじめに

省エネルギー・省資源が強調される中,有機性排水の メタン発酵処理技術の一つとして,上向流嫌気性汚泥床 法(UASB)が有機物濃度COD_{cr} 2000 ~ 3000 mg/L以 上の有機性排水を対象に国内外において普及している^{1,2)}。 しかし,UASB処理では,

①グラニュール汚泥をリアクタに維持するために一定 通水量にする必要がある。

②リアクタ内の温度を35℃に維持するために加温する 必要がある。

等の制約があるため,低濃度有機性排水への適用例は 少なかった。

低濃度有機性排水へのUASB処理の検討例としては, アクアルネッサンス計画における当社(当時,㈱荏原製 作所)が実施した流入下水を対象としたUASB処理実験 があげられる³。当時は,UASB槽内でグラニュール汚 泥の活性度低下や崩壊等の現象があり,実用化には至ら なかった。近年では、グラニュール汚泥の生成にはこだ わらず,沈降濃縮した汚泥を用いることで一定の成果を あげられ、インドやブラジル等の比較的気温の高い地域 で採用されるケースが増えてきた^{4.5}。しかし、無加温条 件下における嫌気性微生物の有機物の分解及びメタン化 に関する処理特性については十分把握できておらず、日 本国内の様な流入水温が低い地域では、更なる技術開 発が必要であった。

そのような背景のなかで,(独)新エネルギー・産業技 術総合開発機構(NEDO)のプロジェクトとして平成18 ~20年度に行われた「無曝気・省エネルギー型次世代 水資源循環技術の開発」に参加した。このプロジェクト では,前段に嫌気性処理としてUASBを,後段に好気性 処理として下降流懸架式スポンジリアクタ(DHS: Down-Flow Hanging Sponge reactor)を採用し,両者 を組み合わせることによって,省エネルギー型の排水処 理システムを構築することを目標とした。鹿児島県霧島 市国分隼人クリーンセンターにUASB+DHSのパイロッ トプラントを建設し,約2年間実証実験を行った。その 結果,プロジェクト全体の成果として,当初の目標を達

^{*} 荏原エンジニアリングサービス(株) 博士(工学)

^{**} 荏原エンジニアリングサービス(株)

^{**} 風水力機械カンパニー カスタムボンプ事業統括 富津工場 大型ボンプ技術室 第二グループ

成できた。

前記プロジェクトで当社は、前段UASBの開発を(独) 国立環境研究所及び長岡技術科学大学と協力して担当 し、低濃度有機性排水の無加温メタン発酵技術を確立す ることを目的に、UASBパイロットプラントを用いて年 間を通じた水温変化とUASB処理特性(バイオガス発生 量、UASB槽内汚泥性状)の関係の把握を行った。

以下得られた知見を報告する。

2. 実験装置と実験方法

2-1 実験装置と処理フロー

図1にUASBパイロットプラントの処理フローを示す。 **写真**にUASBパイロットプラントの全景を示す。また, **表1**に主要機器の仕様を示す。UASBパイロットプラン トは寸法幅2.8 m×長さ1.5 m×高さ5.4 m, 有効水深5.0 m, 有効容量 20.2 m³である。UASB 槽下部に流入管, UASB 槽上部に気固液分離部(GSS: Gas Solid Separator)を 設置した。

UASBパイロットプラントからのバイオガス発生量は 水封槽経由,脱硫後,ガス量を乾式ガスメータで測定し た。その後,バイオガスは有水式ガスホルダに貯留し, バイオガス量が一定量以上になると,余剰ガス燃焼装置 で焼却した。

冬季の低水温時対策の一環として、最初沈殿池で固液 分離した濃縮汚泥を、可溶化槽で加温して酸発酵させた 後に、分離水とともにUASB槽に供給できるようにした。

2-2 実験方法

2-2-1 UASBパイロットプラント実験

表2にUASBパイロットプラントにおける各実験期間 の実験条件を示す。種汚泥にはK市下水処理場の中温消 化汚泥を使用し、UASB槽に20 m³投入した。馴養期間 には水量を段階的に上げるようにした。実験期間1以降 はUASBの流入水量は原則として50 m³/d〔水理学的滞 留時間(HRT:Hydraulic Retention Time)10h,通水速 度(LV:Linear Velocity)0.5 m/h〕と一定にし、流入下 水の水温変化に対応したUASB処理成績の把握を行った。 UASB処理後の処理水は全量を後段のDHS槽に移送した。

実験期間4~6は冬季の低水温対策の検討を行った。 実験期間8以降の処理の安定した期間を評価期間とした。

2-2-2 試料のサンプリング方法及び分析方法

試料の採取は,原則として1時間ごとにオートサンプ ラを使用したコンポジットサンプリングによって行った。 なお,サンプルは保冷剤を用いて冷却保存した。

分析方法は原則としてJIS K 0102⁷⁾,下水試験方法⁸⁾

10-101 01/229

写真 UASBパイロットプラント全景 **Photo** Overview of UASB pilot plant

機器名称	概略仕様		
Name	Specifications		
自動スクリーン	目開き 2.5 mm		
Auto-screen	Opening		
原水槽	2 m³(有効容量1 m³:かくはん機付きタンク)		
Raw water tank	Effective capacity of tank with stirrer		
UASB槽 UASB reactor	W 2.8 m×L 1.5 m×H 5.4 m(有効水深5.0 m) Effective depth of the tank 有効容量 20.2 m ³ (HRT:10 h LV:0.5 m/h) Effective capacity		
UASB処理水槽	2 m ³ (有効容量1 m ³ :かくはん機付きタンク)		
UASB treatment tank	Effective capacity of tank with stirrer		

表1 UASB実験装置主要機器の概略仕様 Table 1 Specifications of main UASB experimental apparatus

宝瞈期間	期間	宝瞈经過日数	設定流入水量 m ³ /d	備老
Experimental period	Period	Elapse of time	Influent flow rate	Remarks
馴養 Acclimation	2007/6/1~10/5	$1 \sim 127$	$5 \sim 50$	
1	$2007/10/6 \sim 10/29$	$128 \sim 151$	50	
2	$2007/10/30 \sim 12/9$	$152 \sim 192$	50	
3	$2007/12/10 \sim 2008/1/21$	$193 \sim 235$	50	
4	$2008/1/22 \sim 2/29$	$236 \sim 274$	40	
5	$2008/3/1 \sim 3/31$	$275 \sim 305$	50	
6	$2008/4/1 \sim 5/2$	$306 \sim 337$	50	
7	$2008/5/3 \sim 6/30$	$338 \sim 396$	50	
8	$2008/7/1 \sim 10/24$	$397 \sim 512$	50	気在期間
9	$2008/10/25 \sim 12/5$	$513 \sim 554$	50	評1111期间 Evaluation pariod
10	$2008/12/6 \sim 2009/2/20$	$555 \sim 631$	50	Evaluation period

表2 UASBパイロットプラントにおける各実験期間の実験条件 **Table 2** Experimental conditions for each experimental period of UASB pilot plant operation

表3 流入下水性状(平均值) Table 3 Characteristics of sewage (average)

	単位	範囲	平均
	Unit	Range	Average
pН	_	$7.1 \sim 7.8$	7.5
M-アルカリ度 M-alkalinity	mg/L	$143 \sim 220$	187
SS (1.0 µm)	mg/L	$115 \sim 243$	162
SS (0.45 µm)	mg/L	$151 \sim 312$	208
$\begin{array}{c} \text{SS} & (1.0 \ \mu \text{m}) \\ /\text{SS} & (0.45 \ \mu \text{m}) \end{array}$	_	$0.63 \sim 0.97$	0.82
COD _{Cr}	mg/L	$315 \sim 520$	402
S-COD _{Cr}	mg/L	$39 \sim 158$	96.3
S-COD _{Cr} /COD _{Cr}	_	$0.09 \sim 0.4$	0.24
BOD	mg/L	$114 \sim 248$	165
S-BOD	mg/L	$18.2 \sim 73.9$	38.5
S-BOD/BOD	_	$0.1 \sim 0.36$	0.24
COD _{Mn}	mg/L	$52.5 \sim 127$	87.6
S-COD _{Mn}	mg/L	$13 \sim 38$	28.7
S-COD _{Mn} /COD _{Mn}	_	$0.13 \sim 0.45$	0.33

に準拠した。溶解性成分 (S-COD_{cr}: Soluble Chemical Oxygen Demand, S-BOD: Soluble Biological Oxygen Demand等) の分析はろ紙孔径0.45 μ m でろ過したろ液 を用い,浮遊物質 (SS: Suspended Solid) の分析は原 則として孔径0.45 μ mのろ紙を使用して行った。なお,下水性状の比較においては孔径0.45 μ mのろ紙によるろ 過残渣〔以後SS (0.45 μ m)〕とろ紙孔径1.0 μ mによる ろ過残渣〔以後SS (1.0 μ m)〕との両者の分析値を区別 して表示した。

3. 実験結果と考察

3-1 流入下水性状(原水)

表3に流入下水の性状を示す。各水質項目ともに、年

図2 UASBパイロットプラントの処理成績(1)(2007~2009年) Fig. 2 Treatment result of UASB pilot plant (1)

間を通じた大きな水質に差は少なかった。全期間におけ る平均値は, pH 7.5, M アルカリ度187 mg/L, SS (1.0 μm) 162 mg/L, SS (0.45 μm) 208 mg/L, COD_{cr} 402 mg/L, S-COD_{cr} 96.3 mg/L, BOD 165 mg/L, S-BOD 38.5 mg/L であった。

図3 UASBパイロットプラントの処理成績(2)(2007~2009年) Fig. 3 Treatment result of UASB pilot plant (2)

平成17年度下水道統計⁹⁰から、下水水量10000 m³/d以 下の下水処理場における流入下水の平均SSは173 mg/L である。したがって、国分隼人流入下水SS(1.0 µm) 162 mg/Lは一般的な下水処理場の流入水質と考えられる。

3-2 UASBパイロットプラント実験結果

3-2-1 処理成績の概要

図2にCOD_{cr}負荷とガス発生量の変化,**図3**にpH,SS 処理成績の変化,**図4**にCOD_{cr}処理成績の変化をそれぞ れ示す。

(1) 馴養期間(2007年6月1日~10月5日,実験経過後1~127日)

下水中温消化汚泥を種汚泥としてUASB槽に20 m³投入した後,原水水量を5~50 m³/dの範囲で運転を行った。 その結果,実験経過後110日目に原水水量50 m³/dの定 常運転を行うことができた。

(2)実験期間1~3(2007年10月6日~2008年1月21日, 実験経過後128~235日)

図4 UASBパイロットプラントの処理成績(3)(2007~2009年) Fig. 4 Treatment result of UASB pilot plant (3)

水温25℃ (UASB槽内温度) 以上の定常運転期間では COD_{cr}容積負荷1.3 kg-COD_{cr}/(m³·d), HRT10 hの条件で, バイオガス発生量1.5 m³/d, COD_{cr}除去率76%, SS除去 率84%の安定した処理結果が得られた。この期間におい てはUASB槽内でのSS蓄積はみられなかった。一方, 2007年11月から12月の期間の水温低下 (25℃→20℃) に伴い,バイオガス発生量は0.5 m³/dまで低下するとと もにCOD_{cr}除去率, SS除去率は低下する傾向にあった。

(3)実験期間4~6(2008年1月22日~5月2日,実 験経過後236~337日)

実験期間4ではUASB槽内平均水温は18℃となり,水 量50 m³/d(LV 0.5 m/h)でUASB槽内汚泥界面が上昇し, 槽内汚泥維持が難しくなったため,水量を40 m³/d(LV 0.4 m/h) に下げた。その結果,UASB槽内汚泥界面は 安定し,UASB処理水質は安定した。

実験期間5,実験期間6では,低水温時の対策として, 流入下水を最初沈殿池に通し,最初沈殿池越流水を

Fig. 5 Change in average MLSS and MLVSS concentration in the UASB reactor

UASBに供給した。また,実験期間6では最初沈殿池汚 泥を可溶化槽で酸発酵処理した後,最初沈殿池越流水と 混合してUASBに通水した。

その結果,実験期間5では平均COD_{cr}容積負荷0.66 kg-COD_{cr}/(m³・d) でバイオガス発生量0.93 m³/d,処理 水SS 35 mg/Lと安定した処理成績が得られた。実験期 間6では平均COD_{cr}容積負荷0.84 kg-COD_{cr}/(m³・d) で バイオガス発生量1.66 m³/d,処理水SS 57 mg/Lでバイオ ガス発生量が増加した。

(4) 実験期間7~8 (2008年5月3日~10月24日, 実 験経過後338~512日)

実験期間7以降は流入下水をUASB槽に直接通水した (原水水量50 m³/d)。水温の上昇とともにバイオガス発 生量は増加する傾向にあった。またこの時期になると UASB槽内汚泥の沈降性も改善され,槽内MLSS (Mixed Liquor Suspended Solids) 濃度も高くなる傾向にあった (図5)。実験期間8ではUASB水温24℃, COD_{cr}容積負 荷0.96 kg-COD_{cr}/(m³・d),バイオガス発生量2.57 m³/d となった。2007年度の同時期(実験期間1~2)に比べ るとバイオガス発生量は1 m³/d 増加した。

(5) 実験期間9~10 (2008月10月25日~2009年2月20日,実験経過後513~631日)

実験期間9ではUASB槽内水温は25℃から20℃に低下 した。このため、COD_{cr}容積負荷1 kg-COD_{cr}/(m³・d) でバイオガス発生量は2.21 m³/dに低下したが、2007年 度の同時期(実験期間3)に比べるとバイオガス発生量 の低下は少なかった。

Fig. 6 Correlation between temperature in UASB reactor and Biogas production rate per wastewater flow rate

実験期間10ではUASB槽内水温は20℃前後となった。 2007年度の同時期(実験期間4)ではUASB槽内水温18℃ であったが、2009年1月後半から2月の期間,鹿児島地区 は温暖な気候であったため冬季において水温低下が顕著で なかった。このため、CODcr容積負荷1.02 kg-CODcr/(m³·d) でバイオガス発生量は2.25 m³/dとなり,冬季における ガス発生量の低下は小さかった。

以上のように水温18℃以上ではHRT 10h, LV 0.5 m/h の条件で,安定したUASB処理結果が得られた。

3-2-2 バイオガス発生量と水温との関係

UASB処理の安定した2008年7~12月の期間におけ るUASB槽の水温と流入下水当たりのバイオガス発生量 の関係について検討した。なお、ここでのバイオガス発 生量は溶存メタンガスが含まれておらず、GSSにて回収 されたバイオガス量を意味する。図6にUASB槽内水温 と流入下水当たりのバイオガス発生量の関係を示す。

流入下水当たりのバイオガス発生量は水温25℃で0.05 (m³-ガス/m³-下水),水温20℃で0.043 (m³-ガス/m³-下水) であり,水温が5℃低下するバイオガス発生量は14%低 下した。

3-2-3 UASB 槽内汚泥量,汚泥性状の変化

図5にUASB槽内のMLSS, MLVSS平均汚泥濃度変 化を示す。2008年6月1日(実験経過後361日目)以降 になるとUASB槽内平均MLSSは8000 mg/L以上となり, 2009年2月20日(実験経過後631日)にはUASB槽内平 均MLSSは14000 mg/Lに増加した。

図7 UASB パイロットプラント下部汚泥の沈降速度, SVI の変化 (2007 ~ 2009年)

図8 UASBパイロットプラントの汚泥濃度分布の変化 Fig. 8 Change in sludge concentration profile in the UASB pilot plant

図7にUASB槽内下部汚泥の沈降速度,SVI (Sludge Volume Index)の変化を示す。2008年6月1日(実験経 過後361日目)以降になると界面沈降速度の増加,SVIの 低下がみられ,汚泥沈降性の改善がみられている。この ため,UASB槽内汚泥濃度が高くなったものと考えられる。

図8にUASB槽内汚泥濃度分布の変化を示す。2007年9 月14日(実験経過後106日目)では,槽底部汚泥のMLSS 10000~20000 mg/Lであったものが,2009年2月24日(実 験経過後635日目)では,槽底部汚泥のMLSS 20000~

	表4	UASB処理結果のまとめ	
Table 4	Sum	nmary of UASB treatment results	

		単位 Unit	範囲 Range	平均 Average	
UASB槽 平均水温 Average temperature in the UASB reactor		C	17.9 ~ 28.5	23.8	
水量 Flow	rate	m³/d	$16 \sim 53.6$	49.6	
HRT		d	$9.4 \sim 31.2$	10.1	
通水速 Lineau	速度LV r velocity	m/h	$0.16 \sim 0.53$	0.5	
COD _{Ci} COD _{Ci} volum	容積負荷 etric load	kg-COD _{Cr} / (m ³ · d)	$0.79 \sim 1.32$	0.99	
COD _{Ci} COD _{Ci} load	汚泥負荷 sludge	kg-COD _{Cr} / (kg-MLVSS•d)	$0.10 \sim 0.14$	0.12	
SS 容利 SS voi load	責負荷 lumetric	$kg/(m^3 \cdot d)$	$0.37 \sim 0.7$	0.48	
バイオガス 発生量 Biogas production rate		m³/d	$1.36 \sim 3.19$	2.4	
メタンガス濃度 Methane gas concentration		v/v%	$54 \sim 77.1$	70.5	
	流入下水 Sewage	_	$7.1 \sim 7.6$	7.4	
μd	UASB 処理水 UASB treatment water	_	$6.3 \sim 6.7$	6.5	
	流入下水 Sewage	mg/L	$318 \sim 533$	400	
CODG	UASB 処理水 UASB treatment water	mg/L	$62 \sim 278$	145	
	流入下水 Sewage	mg/L	$83 \sim 158$	100	
S-COD _{cr}	UASB 処理水 UASB treatment water	mg/L	31 ~ 93	44.3	
~	流入下水 Sewage	mg/L	$151 \sim 283$	195	
SS (0.45 μ m)	UASB 処理水 UASB treatment water	mg/L	$22 \sim 161$	60.7	

(2008/7/1 ~ 2009/2/20, 実験経過後 397 日~ 631 日) (from 397th to 631th day after start of experiment)

40000 mg/Lと約2倍の濃度となった。このようにUASB 槽内汚泥濃度が改善されたことにより,低水温において も安定したUASB処理が得られたものと考えられる。

3-2-4 UASBパイロットプラント実験結果のまとめ

UASB 槽内汚泥性状が改善され,UASB処理が安定し た実験期間8~実験期間10(2008年7月1日~2009年2月 20日,実験経過後397~631日目)についてUASB処理 結果をまとめた。**表4**にその結果を示す。

UASB 槽平均水温 17.9 ~ 28.5 ° (平均23.8 °), COD_{cr} 容積負荷 0.79 ~ 1.32 kg-COD_{cr}/(m³・d) [平均0.99 kg-COD_{cr}/(m³・d)], COD_{cr}汚泥負荷 0.10 ~ 0.14 kg-COD_{cr}/(kg-MLVSS・d)] において,原水COD_{cr} 318 ~ 533 mg/L (平均400 mg/L) に対しUASB処理水COD_{cr} 62 ~ 278 mg/L (平均145 mg/L),平均COD_{cr}除去率63.8%であった。バイオガス発生量は1.36 ~ 3.19 m³/d (平均2.4 m³/d),メタンガス濃度は54 ~ 77.1% (平均70.5%),であった。

生活排水(下水)を対象とした実UASB処理のデータ は少ないが,永田ら¹⁰⁾がインド ミルザプールで14000 m³/dの家庭下水をUASB処理したプラントの運転状況 (1995年6月)を紹介している。その結果によると, COD_{cr}容積負荷1.12 kg-COD_{cr}/(m³・d),HRT 6.1 h, LV 0.66 m/hの条件で,流入下水COD 388 mg-COD_{cr}/L に対しUASB処理水COD 133 mg-COD_{cr}/L, COD_{cr}除去 率65%,バイオガス発生量は平均368 m³/d,下水水量当 たり0.036 m³/(m³・d)である。

この結果は前記UASBパイロット実験結果とほぼ近い 結果といえる。したがって、今回の実験データの妥当性 が確認できた。

4. まとめと今後の課題

4-1 まとめ

無加温における生活排水を対象としたUASB現地実験 を行い,次の知見が得られた。

(1) 実験全期間を通しての流入下水(UASB原水)性状は、pH 7.1 ~ 7.8(平均7.5)、SS(0.45 µm)151 ~ 312 mg/L(平均208 mg/L)、COD_{cr} 315 ~ 520 mg-COD_{cr}/L(平均402 mg-COD_{cr}/L)、BOD 114 ~ 248 mg/L(平均165 mg/L)であり、年間を通して水質変化は小さかった(表3)。

(2) 原水水量50 m³/d (HRT 10 h)の処理条件で, UASB 槽内汚泥濃度が高くなった期間(実験経過後397 日目以降)の処理成績(平均値)は水温23.8℃, COD_{cr} 容積負荷0.99 kg-COD_{cr}/(m³・d), COD_{cr}汚泥負荷0.12 kg-COD_{cr}/(kg-MLVSS・d)においてCOD_{cr}除去率63.8%, SS除去率68.9%の安定した処理結果が得られた(表4)。 (3) UASB槽下部汚泥(底部から0.75 m)の界面沈降 速度(MLSS 4000~6000 mg/L)は実験開始後200日 目で0.5 m/hであったものが,実験開始後400日目以降 には2.0 m/hに改善され,UASB槽内汚泥濃度が高く維 持できるようになった。また,槽下部には粒状化汚泥が 増える傾向にあった。

4-2 今後の課題

本研究開発結果から,UASB汚泥濃度が確保できた1年 後においては,低水温(18~20℃)で安定したUASB 処理ができることが確認できた。ただし,低水温時では UASB処理水SS濃度が高くなるため,後段好気性処理 の安定性を考慮した対策が今後必要となる。

謝 辞

本論文の「無加温条件下における生活排水のUASB処 理」は、(独)新エネルギー・産業技術総合開発機構(NEDO) の「無曝気・省エネルギー型次世代水資源循環技術の開 発 実施期間平成18年~平成20年度」において実施し た〔三機工業㈱、(㈱荏原製作所,(独)土木研究所,(財) 造水促進センターによる共同実験で荏原は前処理UASB を担当〕。また、実証試験フィールドは鹿児島県霧島市 に御提供いだいた。関係者各位の御協力・御尽力に深く 感謝する。更に,現場での分析,データ収集に御尽力い ただいた山下ゆり氏,日高るみ子氏,楠崎貴庸氏にこの 場をかりて感謝の意を表する。

参考文献

- 原田秀樹著,須藤隆一編著:微生物固定化法による排水処理 7章 スラッジブランケット(UASB)法,産業用水調査会 pp.235-254 (1988).
- 本間康弘,鈴木利宏,磯崎裕一:最新の嫌気性排水処理技術 高効率・省エネルギー型嫌気性廃水処理シテム 高負荷EGR での有機廃水処理,環境浄化技術, Vol.5, No.3, pp.8-11 (2006)
- 3) 森 勇,桐山光市著,アクアルネッサンス編集委員会編集: 膜複合型嫌気方式による廃水処理技術,第3章 実証プラントによる運転結果 第1節 低濃度廃水 (大規模下水) pp.294-306 (1991)
- Adrianus C. van Haandel, G.Lettinga: Anaerobic Sewage Treatment, John Wiley & Sons (1994).
- Marcos von Sperling and Carlos Augusto de Lemos Chernicharo : Biological Wastewater Treatment in Warm Climate Regions, Volume one, Volume two IWA Publishing (2005).
- 6) 田中秀治,加藤薫,長野晃弘,米山豊,高橋優信,原田秀樹: 無曝気・省エネルギー型次世代水資源循環技術の開発,第46回 下水道研究発表会pp.730-732 (2009)
- 7) 詳細 工場排水試験方法 JISK0102:1998 解説, 日本規格協 会出版 (1999.1)
- 8) 下水試験方法,下水道協会編(1997)
- 9) 平成17年度版 下水道統計(第62版)
- 10) 永田伸之,鈴木薫:わが国およびインドにおける嫌気性処理 法を用いた下水処理の実例とバランスシートを応用した運転 データ解析,下水道協会誌, Vol.35, No.422, pp.66-77 (1998).